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Abstract—Most engineering tools do not provide much sup-
port for collaborating teams and today’s engineering knowledge
repositories lack flexibility and are limited. Engineering teams
have different needs and their team members have different
preferences on how and when to collaborate. These needs may
depend on the individual work style, the role an engineer has, and
the tasks they have to perform within the collaborating group.
However, individual collaboration is insufficient and engineers
need to collaborate in groups. This work presents a collaboration
framework for collaborating groups capable of providing syn-
chronous and asynchronous mode of collaboration. Additionally,
our approach enables engineers to mix these collaboration modes
to meet the preferences of individual group members. We
evaluate the scalability of this framework using four real life
large collaboration projects. These projects were found from
GitHub and they were under active development by the time
of evaluation. We have tested our approach creating groups of
different sizes for each project. The results showed that our
approach scales to support every case for the groups created.
Additionally, we scouted the literature and discovered studies
that support the usefulness of different groups with collaboration
styles.

Index Terms—collaboration, collaborating groups, software
engineering, change propagation

I. INTRODUCTION

A multitude of engineering tools exist, covering the diverse

needs of engineers, during the different phases of the software

and systems engineering life cycle. These needs are spread

throughout every phase of the software engineering process.

There are tools for requirement engineering, architecture &

design modeling, implementation, and beyond covering other

engineering disciplines [1]. However, nearly all engineering

tools are tailored to the needs of individual engineers and

rarely to the needs of a collaborating group of engineers.

Yet, collaborative engineering is the norm and the group of

engineers play a vital role in this engineering process.

The importance of collaboration for software engineering

groups has been recognized very early and has been an active

research field since the beginnings of the 90’s [2]. Collab-

oration has been described in taxonomies [3], [4] - within

the software engineering domain and with other engineering

disciplines (e.g., between mechanical engineers and software

engineers) [5]. However, today’s engineering tools usually

focus on individual engineers who capture and handle artifacts

locally on their workstation. In doing so, these tools fail to

address many collaboration needs: such as the sharing of

artifacts or changes at arbitrary times with arbitrary engineers

in the same collaborative group.

As a consequence, explicit collaborative tools have emerged

to address the lack of tooling support. However, all main-

stream approaches, such as Git [6], SVN [7], support a

single style of asynchronous group collaboration. They have

limited means of sharing artifacts with some engineers (i.e.,

as desired in feature-driven engineering [8]) or no means of

sharing artifacts’ changes continuously (i.e., as required by

pair programming [9], [10]). A flexible collaboration approach,

as we discuss in this paper, could help to overcome these lim-

itations. Furthermore, a systematic mapping study by Portillo

Rodriguez et al. showed that there is a lack of tools supporting

collaboration in groups with different modes [11].

Our experience, supported by literature [12], suggests that

the collaboration among engineers rarely follows limited

groups, tools, timing intervals. Moreover, collaborating engi-

neers may use the same tools (e.g., a group of programmers

using the same programming tool) or different tools (e.g.,

a designer and a programmer working together). There are

hardly any restrictions on who needs to collaborate with

whom, when, and how. Thus, the collaborative groups can

apply uniform artifact sharing mode or they may require

different modes from each group member. An extension with

a grouping mechanism to our previous flexible collaboration

framework is proposed and discusses in this paper.

The contributions of this paper are as follows: First, we

present scenarios that engineering groups can use to col-

laborate and propagate their changes. Second, we present a

collaboration language that allows engineers to specify their

desired collaboration style, both among individual members

and in addition to collaborate within their group. Third, we

present a change propagation algorithm that enforces the engi-

neers’ desired collaboration’s parameters in respect to change

propagation within groups. Fourth, a cloud-based prototype

demonstrates a working implementation. There, the cloud

serves as a change propagation facilitator. Lastly, to ensure

the principles of the collaboration as defined by the language,

we created a model using Alloy. The model verifies that the

restrictions and parameters required for the data propagation

stand for the applied change propagation algorithm.
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We assessed the feasibility and scalability of our approach

using four open source projects found on Github. The projects

are: Google’s SyzKaller, Amazon Web Service Javascript

SDK, Facebook’s RockSDB and Microsoft Visual Studio. We

implemented them using our proposed collaboration language

and tested them using their collaboration history (as available

through commits). We performed experiments subdividing the

engineers of these projects into groups of different sizes. For

both collaboration modes, synchronous and asynchronous, we

found that the number of engineers in a group had an impact

on the time required to propagate all the changes. Furthermore,

we compared these propagation times, from collaborating in

groups, with scenarios in which engineers collaborate directly

with each other without groups. Our experiments showed that

the collaboration in groups propagated the same amount of

changes significantly quicker than when all engineers collab-

orate individually with each other.

The rest of the paper is structured as follows: Section

II provides the motivating examples and their challenges.

Section III discusses our approach and a mixed collaboration

scenario for group collaboration. Later, Section IV presents

the evaluation of our approach, Section V explores the related

work and lastly Section VI has our concluding remarks and

future work.

II. MOTIVATING EXAMPLES

Collaboration among engineers is inevitable in modern

engineering. Furthermore, it is essential for engineers to form

groups within a project. Imagine a number of engineers that

need to create two different groups. Naturally, each engineer

has his own private workspace which contains his own arti-

facts. The engineer has also his/her own view of the artifacts

within his/her tool’s view. This information needs to be shared

among the other four engineers in different ways based on

the role of each engineer. This can occur through a shared

workspace that every group member can have access to.

The core of this section presents three examples of engi-

neers collaborating in groups using two different collaboration

modes. The first mode is synchronous collaboration where a

change made by an engineer is propagated instantly to the

group and the collaborating engineers. The second mode is

asynchronous which requires trigger actions of the engineers

to propagate their changes to the group and the collaborating

engineers. Finally, we describe when these two different

collaboration modes are being mixed together.

A. Synchronous Group Collaboration

In this example, we use the synchronous collaboration

mode, from now on, we call it Instant mode to present the

collaboration among the different engineers within groups.

Figure 1 presents three engineers form a collaborating group

(Alice, Bob and Charlie). These engineers are collaborating by

sharing artifacts to their group workspace instantly. Imagine

Alice creating changes in her private workspace, then these

changes are instantly shared to the group workspace, from

where they are instantly propagated to the private workspaces

Fig. 1. Instant Group Collaboration Scenario

Fig. 2. Triggered Group Collaboration Scenario

of Bob and Charlie. Similarly, Bob could make another change

in his private workspace and share it instantly with the

group workspace allowing all engineers to receive the changes

instantly. This scenario is used for engineers that want to

collaborate in a similar way as in GoogleDoc.

B. Asynchronous Group Collaboration

In this example, we use the asynchronous collaboration

mode, from now on we call it Triggered mode. We will

apply change propagation with the use of trigger actions

between the private workspaces and the group workspace and

vice versa. Figure 2 presents the scenario where an arbitrary

number of engineers forming a group that shares information

asynchronously. As in the previous scenario, Alice creates a

change in her private workspace at one point, then she needs to

perform a trigger action to propagate her changes to the group

workspace. Similarly, Bob and Charlie are required to perform

a trigger action on their side to receive Alice’s changes to their
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Fig. 3. Mixed Mode Group Collaboration Scenario

private workspace. This asynchronous collaboration scenario

is used in all well known version control systems like GIT

and SVN.

C. Mixed Use of Collaboration Modes

This motivating example is more complex since it uses both

collaboration modes, instant and triggered in the same group

collaboration. This scenario assumes that engineers would like

to apply different collaboration modes per engineer.

Figure 3 presents different engineers with different collabo-

ration preferences working together in the same collaboration

group. In this scenario, Alice is the main developer of the

project and she wants to share her changes instantly to

the group as well as instantly receive theirs. While Bob is

responsible for component integration and wants to receive

only production ready artifacts and then share the completed

integration work to the group thus prefers only triggered

collaboration. Charlie is a test engineer and want to receive

production ready code for black box testing while he shares

his unit tests immediately with the group for Alice to receive

these tests.

Hence, we see that different engineers and roles within

group require different collaboration modes. Varying engi-

neer’s needs come also with different challenges in order to

provide a collaboration framework to support them.

D. Challenges and Objectives

To date, tools supporting group collaboration usually follow

asynchronous (GIT, SVN) or synchronous (Collabode [13],

[14], GoogleDocs) collaboration mode. At most, some tools

may support the change from one collaboration mode to the

other (Cloud9 [15], ATCoPE [16]). The main challenge of

a collaboration framework is to be able to support different

collaboration modes within the same group of collaborators.

An even more advanced challenge is not only supporting

different collaboration modes for each engineer but also for

each direction from and towards the group workspace as

presented in Section II-C.

Furthermore, when a collaboration framework succeeds

in providing mixed collaboration modes, it has to ensure

that the changes are propagated correctly according to the

collaboration styles. For example, an engineer with triggered

collaboration mode should not receive a change unless he/she

makes the necessary triggering actions to receive the change.

Next, this framework should ensure that all data is transferred

to the collaborating private workspaces regardless of the

collaboration modes selected by the engineers. This requires

all data to be able to be transferred instantly to these engineer

selecting instant collaboration mode and the same data must

be available for those engineer which selected triggered mode.

III. METHOD

This section presents our approach for a collaboration

framework that supports group collaboration. The work pre-

sented in this paper focuses on the propagation of changes be-

tween collaborating engineers within groups. Services beyond

the sharing of artifacts, for instance communication between

engineers, are out of the scope of this work.

Our collaboration framework provides instant and triggered

mode and also the ability to mix these modes based on the

individual engineers needs. Additionally, our framework is

tool independent since it can be applied to different kinds of

artifacts. It allows to define the change propagation between

the group workspace and the individual private workspaces

(for the collaborations between individual engineers). Our

approach consist of i) the configuration language to define the

collaboration, and ii) the algorithm to propagate the changes

within a group according to the defined collaboration.

A. Configuration language

The configuration language defines the syntax and semantics

on how engineers are allowed to configure their collaboration.

It allows engineers to select Instant or Triggered mode and the

collaborating parties. In our approach the collaboration is es-

tablished between two workspaces and it is uni-directional be-

tween these workspaces. Figure 4 illustrates the configuration

language as it is represented in a meta model representation.

Fig. 4. High Level Model For The Configuration Language
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The main elements of the configuration language are

the CollaborationPrimitive which contains the informa-

tion that is needed to establish the collaboration between

the workspaces, the CollaborationType, the Trigger, the

Change, the Workspace.

We define the CollaborationPrimitive as a tuple C =

{T,S,R} such that

• T is the CollaborationType.

• S is the sending Workspace.

• R is the receiving Workspace.

We define CollaborationType (Ct) as an object such that

Ct.Type ∈ {Instant, Triggered}.

Workspace is defined as a tuple Ws = {Owner, Collabora-

tionPrimitives, Changes, Trigger} such as

• Owner is a string.

• CollaborationPrimitives is a set of CollaborationPrimi-
tive.

• Changes is a set of Change.

• Trigger is an action for starting change propagations when

type=Triggered.

To establish the group collaboration, we define the Group
Workspace as an extension to the workspace element that

inherits the owner field but it does not set it with a value(i.e.,

remains NULL).

Finally, we define a Change as an element to represent the

changes made to an artifact by an engineer through a given

tool (i.e., described by a workspace). The engineer who made

the change is considered the change initiator.

The configuration of the group collaboration is the same as

the configuration of individual collaboration since the group

workspace is an extension of the workspace element. Based

on the definition of the collaboration primitive, the engineer

defines a sender and a receiver of the change propagation

and the type of the collaboration. This allows the engineer to

define the mixed mode of collaboration even between his/her

relationship to the group.

As an example consider the scenario presented in Figure 3.

Using our configuration language we would define six col-

laboration primitives, three with the engineers’ workspaces as

senders and the group workspace as receiver and three with

the group workspace as sender and receivers each one of the

three engineers’ workspace. For each one of the primitive, we

can define its type separately. Figure 5 presents an instance

of our configuration language for the mixed scenario with

six collaboration primitives for three engineers and the group

workspace. We see that ”Charlie” can define his collaboration

with the group differently when he makes a change and when a

change is propagated from the group workspace. Furthermore,

Alice and Bob can work with their own individual styles within

the same collaborative group.

B. Change Propagation

The behavioral aspect of the configuration language is the

change propagation algorithm which is depicted in Algorithm

1. The algorithm takes as input either a change or a trigger

(usually not both). The changes correspond to creations,

modifications, and deletions of artifacts’ elements within tools.

The triggers denote events when engineers want to propagate

these changes to and from a group. They are relevant in case of

triggered collaborations only and ignored otherwise. In case a

change is passed, the algorithm checks for each collaboration

primitive defined by the change initiator (workspace), whether

the collaboration primitive is instant and, if true, forwards

the change to the defined receiver. In case the receiver is a

group workspace, the same propagation algorithm is called,

so the changes are propagated through all the collaboration

primitives of type instant that have the group workspace as

sender. As was discussed above, the receiver then synchronizes

these changes with its respective tool normally a tool adapter,

completing the change propagation. In case a trigger is passed,

the algorithm checks for collaboration primitives in the sender

of the trigger (also a workspace), that are of type triggered,

and forwards the change to the defined receiver.

Imagine Alice making a change to her artifacts. The prop-

agation algorithm is called (line 1). Automatically, the algo-

rithm takes the change and retrieves its initiator collaboration

set (algorithm line 3). It checks collaboration primitives that

are of type instant and it will recover the collaboration

primitive with the group workspace propagating the change

to it (lines 4-5). Then, the group workspace initiates the

propagation algorithm and checks its list of collaborations for

instant collaborations (lines 6-11). In the scenario depicted

in Figure 3 there are not any available. Thus, the algorithm

terminates.

Later, Charlie wants to make a change to his code. There-

fore, he needs to receive the latest code shared in the group

to avoid introducing possible conflicts. He initiates the change

propagation algorithm with a trigger that set the sender being

the group workspace (line 1 and lines 12 - 15). The group

workspace recovers its set of collaborations that are triggered

and selects the one that has the engineer who triggered the

propagation (i.e., Charlie) as receiver (line 17). When found,

the changes submitted by Alice will be passed to Charlie (Line

18). The sender is the group workspace but the initiator of

the trigger is an engineer by creating and setting the trigger’s

sender and initiator field.

Similar, actions will occur when Bob needs Alice’s changes.

To call the change propagation algorithm from the group

workspace, the trigger is instantiated with sender being the

group workspace and Bob as its initiator. Then, Bob would

be able to receive the changes made by Alice. The lines 22

to 24 are applied when a trigger has propagated changes to

the group workspace from a private workspace and the group

has collaborations that are of type instant with other private

workspaces. In our scenario, if Bob wants to share his changes

into the group. He needs to initiate the change propagation

algorithm by sending a trigger. Then, the algorithm will

retrieve his defined collaboration primitive with the group and

it will propagate his changes to the group workspace.
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Fig. 5. Illustration of Mixed Scenario with Our Approach as Model Instance

C. Method’s Verification

In order to verify our collaboration framework, we also

built an Alloy model using the configuration language and

the change propagation algorithm 1. In the Alloy model, we

define the required predicates based on the requirement of the

change propagation algorithm. The Alloy model allowed us to

verify the soundness of our approach in respect to the required

change propagation among defined collaboration primitives

within Alloy model’s scenarios.

D. Implementation

As a proof of concept, we have implemented our collabora-

tion framework (configuration language and change propaga-

tion algorithm) in our platform called DesignSpace [17]. We

have set up change propagation in triggered and instant mode

using both JUnit tests as well as actual tools to propagate

changes among the engineers workspaces. To interact with

the DesignSpace platform, we have built tool adapters for

Eclipse, Microsoft Visio [18] and others. The Alloy model

has verified a number of properties with its implementation.

However, we decided also to test this in the proof of concept

implementation making changes to the defined collaboration

primitives. During operation, we changed the receiver, in

another case, we switched the collaboration primitive’s type.

After these changes, we observed the behavior of the system.

The behavior of the system was as expected and verified by

the Alloy model.

IV. EVALUATION

This section presents the evaluation of our approach for

group collaboration between the different engineers. A main

concern that the propagation algorithm may rise is its ability

to scale. Thus, this section will answer that question. Does

the approach scales with real projects? We also present our

exploration for the usefulness of this approach to the different

collaboration styles proposed by the literature and applied

from different tools.

A. Evaluating Scalability

To evaluate the scalability of our approach we took real

projects of different sizes and emulated their sizes in terms

of engineers and average changes per engineer. We evaluated

the scalability of our approach using four open source projects

that are actively developed on GitHub. The selected projects

are:

1) Google SyzKaller Project 1

1Syzkaller’s GitHub page: https://github.com/google/syzkaller
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Algorithm 1 Change Propagation in Synchronous and Asynchronous collaboration style

1: function PROPAGATE CHANGES(c:change, t:Trigger)

2: if c != null then
3: for all cp:CollaborationPrimitive in c.Initiator.CollaborationPrimitives do
4: if cp.type = instant then � Check for Instant collaboration type

5: cp.Receiver.addChange(c)

6: if cp.Receiver = group workspace then
7: c.Initiator := cp.Receiver

8: PropagateChanges(c)

9: end if
10: end if
11: end for
12: else if t != null then
13: for all cp:CollaborationPrimitive in t.Sender.CollaborationPrimitives do
14: if cp.type = triggered then � Check for Triggered collaboration type

15: if cp.Sender = t.Sender then
16: if t.Sender = group workspace then
17: if t.Initiator = cp.Receiver then
18: cp.Receiver.addChange(cp.Sender.getChanges())

19: end if
20: else
21: cp.Receiver.addChange(cp.Sender.getChanges())

22: if cp.Receiver = group workspace then � Case where the group receives triggered changes but has

also instant collaborations to propagate

23: c = cp.Sender.getChanges()

24: c.Initiator := cp.Receiver

25: PropagateChanges(c)

26: end if
27: end if
28: end if
29: end if
30: t.terminate() � The execution of the trigger completes

31: end for
32: end if
33: end function

2) Amazon Web Services SDK for Javascript language 2

3) Facebook RockSDB Project 3

4) Microsoft Visual Studio 4

These projects have different sizes concerning the number

of engineers that collaborate in them. The smallest, Google

Syzkaller, has 73 contributors as by 07/01/2019 and the largest

has 790 as by 07/01/2019. We consider these projects adequate

for the scalability test since they are large enough and contain

a significant number of engineers working on them. We

also chose these projects since they are active and growing

projects where a large number of changes occurred by their

collaborating engineers.

For each project, we examined a set of 70 commits and

we extracted the average number of changed files within

these commits. This gives us the average number of changes

2SKD-JS’s GitHub page: https://github.com/aws/aws-sdk-js
3RockSDB’s GitHub page:https://github.com/facebook/rocksdb
4Visual Studio’s GitHub page: https://github.com/Microsoft/vscode

an engineer performs for our framework to replicate these

projects’ collaboration behavior using our group collaboration

framework. However, since we cannot deduct from GitHub the

group sizes of collaborating engineers within these projects,

we decided to emulate different sizes of group for every

project. The groups sizes we decided to emulate are 5, 10,

20, 50, 100 and all engineers of a project in a group.

For the scalability study, we performed the measurements

within a Windows Core-I7, 8GB ram computer, using the

Eclipse platform to build unit tests. Each unit test is consid-

ered a test case where we spawned the required number of

collaborators and we filled their workspaces with instances of

changes. Then, within the test, we started the data exchanges.

The measurements were performed within the JUnit environ-

ment and the number of runs were five per test case. From

these five runs, we report their average time in the tables.

Table I summarizes the sizes of the projects selected for the

scalability testing of our approach. The number of engineers

per project are reported in the second column, the average
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TABLE I
SELECTED PROJECTS SIZE

Projects Engineers
Avg Changes
per Engineer

Total Changes
Propagated

Google SyzKaller 73 3 219
AmazonWS SDK-JS 112 14 1568
Facebook RockSDB 414 5 2070
Microsoft Visual Studio 790 3 2370

changes an engineer performs in the project is reported in

the third column. The forth column provides the total number

of changes that will be propagated within the project. In each

project, we are going to create groups of different sizes ranging

from 5 engineers per group until all engineers belonging to

one group. The last group may have a slightly less engineers,

those remaining, than the rest of the groups. We measured the

time required for all groups to transfer all changes among the

group engineers. The time is measured within the JUnit [19]

framework of Eclipse IDE [1].

Table II shows the time required for the propagation of

changes among the collaborating engineers in all different

groups in instant mode. The second column of Table II

presents the time required to propagate all changes created

by the engineers in a group of five engineers for all created

groups. We see that regardless of the project’s size the groups

of five engineers require the same amount of time, as expected

since the sizes of the groups are the same despite the total

number of engineers. The third column presents the time

required to propagate the changes engineers made within

groups of 10 engineers. We see that doubling the size of the

group does not seem to have an impact on the time required

to propagate their changes remaining at 16ms. Only when the

size of the groups becomes 20 or 50 engineers per group does

the time increase to 30ms as seen in columns four and five

in Table II. For the project Google Syzkaller, we could not

perform the test with 100 engineers per group since there are

not enough engineers in total in this project. For the rest of

the projects, we see that adding 100 engineers in a group does

not have significant impact in the time measurement for instant

mode. When we created a single group with all engineers for

the test case projects, we see that for the two smaller projects

the time remains around 20ms. However, when the number of

collaborating engineers in a single group is getting larger, the

time also increases from 20ms in the Amazon Web Services

(112 engineers) to 60ms for the Microsoft Visio project (790

engineers). The Facebook RockSDB project (414 engineers)

requires 40ms time in the single group with all engineers.

From the measurements of Table II, we can conclude that

the number of created groups does not really affect the time of

propagation for the changes engineers are making in instant

mode. However, the number of engineers per group is the

key factor that affects the time any number of changes to be

propagated among the collaborating engineers.

Table III shows the time measurements for the test cases

of our approach using the triggered mode of collaboration.

Similarly, with the instant mode, we performed tests dividing

the engineers into groups with different sizes. Note, that in our

experiments we performed the triggering sequentially from all

engineers of a group in order to assess the worst possible

case of change propagation. We observed that the number

of groups existing does not create significant changes to the

time required to propagate the changes. The smallest project

requires 16ms while the largest project requires 32ms for the

group with size of five engineers. The time is two times higher

between the two projects for the groups of 5 engineers but the

number of engineers in the largest project is 10 times higher

than the smallest project (73 engineers - 790 engineers). This

difference on the number of engineers, requires almost 10

times more groups in the largest project but only two twice

the time to propagate the changes among all groups.

In contrast to the small effect of the number of groups

required, we see that the number of engineers per group has

a strong effect on the time measurement. In Table III, we

observe that for the triggered mode of collaboration, the larger

the group is, the more time it requires to propagate the changes

of all members of the group to the remaining engineers in the

group. This behavior is expected since the number of triggers

that are required to be executed is larger. Again for the smallest

test project, the Google SyzKaller, we could not perform the

100 engineers per group test. In almost all cases the time is

smaller than a second. The cases with all engineers in one

group for the two largest projects (Facebook RockSDB and

Visual studio projects) are exceptions with times four second

for the RockSDB and 21 seconds for the Visual studio.

Additionally, we see that the number of changes each

engineer performs has an impact on the result but does

not significantly affect the scalability of the approach. We

presented the average changes per engineer in Table I where

we see Amazon Web services project has 14 changes per

engineer while the Google SyzKaller only three changes

per engineer. Even though, the difference of the number of

engineers between the two projects is only 39 engineers, the

time measurements were twice as high which is explained by

the different number of propagated changes.

B. Comparing Groups to Single Collaborations

We also consider the performance benefit of using groups

in our approach instead of creating individual collaboration

between each engineer. Thus, we performed also tests creat-

ing collaboration primitives between the workspaces of each

engineer. We used the same test case projects and the same

number of changes as presented in Table I.

Table IV presents the time measurements to propagate a

number of changes without using group workspaces at the

time of writing of this paper. We only create collaborations

among the engineers of each project. The results for the

instant collaboration mode using the created collaborations is

presented in column five while column six presents the same

set up using triggered collaboration mode. Column one to three

contains the projects and their characteristics again to remind

the reader the corresponding sizes.
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TABLE II
TEST CASES USING INSTANT COLLABORATION MODE

Project
Synchronous Collaboration 5 Members 10 Members 20 Members 50 Members 100 Members All Engineers

Google SyzKaller 0.016s 0.016s 0.03s 0.03s - 0.016s
Amazon Web Service SDK 0.016s 0.016s 0.03s 0.03s 0.03s 0.02s
Facebook RockSDB 0.016s 0.016s 0.03s 0.03s 0.03s 0.04s
Microsoft Visual Studio 0.016s 0.016s 0.03s 0.03s 0.04s 0.06s

TABLE III
TEST CASES USING TRIGGERED COLLABORATION MODE

Project
Asychronous Collaboration 5 Members 10 Members 20 Members 50 Members 100 Members All Engineers

Google SyzKaller 0.016s 0.031s 0.038s 0.057s - 0.069s
Amazon Web Service SDK 0.040s 0.047s 0.064s 0.120s 0.249s 0.334s
Facebook RockSDB 0.032s 0.037s 0.060s 0.135s 0.273s 4.099s
Microsoft Visual Studio 0.032s 0.040s 0.064s 0.145s 0.300s 21s

TABLE IV
TEST CASES USING WORKSPACE TO WORKSPACE COLLABORATION

Test Case Engineers Avg Changes
per Engineer

Total Changes
Propagated

Synchronous Propagation
Time

Asynchronous Propagation
Time

Google SyzKaller 73 3 219 0.038s 0.08s
Amazon Web Service SDK 112 14 1568 0.05s 0.451s
Facebook RockSDB 414 5 2070 0.063s 7.483s
Microsoft Visual Studio 790 3 2370 0.247s 47.115s

We observe that using a group among all engineers is sig-

nificantly faster than creating individual collaborations among

the different engineers of the project. We see that the benefit

of applying groups increases, with the number of collabo-

rators in a project. In the smallest project, without a group

collaboration, we measured around 0.04s for instant and 0.08s

for the triggered collaboration mode. The same project have

around 0.02s and 0.07s time to propagate changes when the

group collaboration was applied. For the largest project, we

measured 0.25s for the instant collaboration mode and around

47s for triggered mode while using a group collaboration the

measurements are 0.06s and 21s respectively.

Similarly, we observe benefit when using the group col-

laboration for the two intermediate projects, Amazon WS

SDK and Facebook RockSDB. Thus, we can conclude that

the use of groups can improve the change propagation within

the team when applied compared to establishing individual

collaborations among the team members.

C. Usefulness of Group Collaboration

Until this point, we demonstrated that our approach is

scalable using real open source projects to evaluate it. The

discussion about the usefulness will take part in this subsec-

tion. Even though, we have not explicitly done an experiment

to evaluate the usefulness of group in collaboration, we

researched for other works that have evaluate the usefulness

of group collaboration. Cook et al. [20] presented a user

evaluation of collaborative tools for software engineering.

They used a post experiment questionnaire to evaluate the

experiments qualitative aspects. The experiment consisted of

tools with asynchronous/triggered collaboration mode and syn-

chronous/instant collaboration mode. The usefulness of both

modes in the distributed setting was 15.7 out of 20 in the

survey climax with 20 being highest and 1 being lowest. The

instant mode scored 14.8 and the general source code sharing

scored 16.4 out of 20. Furthermore, the rapid use of Git in

developing new open source projects as described in Barr et

al. [21] is a good indication of the usefulness of groups within

software engineering. They also performed a semi-structured

interview with six people in four different projects to assess the

need and usefulness of branches and revision control systems.

The interviews revealed that engineer in collaborating groups

require cohesion and isolation during development but also

easy merge of work. These features made GIT a successful

tool among developers. Therefore, as we argue that we can

simulate the GIT collaboration style, we provide the benefits

of GIT to collaborating engineers in a group.

D. Limitations

This work is limited to explore the information exchange

between the collaborating parties and does not focus on

the collaboration awareness and communication between the

collaborating parties. The goal of our evaluation was to

provide the evidence for the scalability of our approach. For

the awareness among collaborating parties, we have built a

graphical user interface. It is linked to our cloud platform and
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adds collaboration management and awareness functionality to

our framework.

V. RELATED WORK

Mcguire et al. [22] had proposed a framework called

SHADE that tried to be flexible in exchanging the different en-

gineering knowledge among defined producers and consumers.

SHADE framework did not have any selection or suggestion

to allow engineers to define the synchronous or asynchronous

mode of the knowledge exchange. Our approach has these

modes in the center of its implementation.

Steinfield, Jang and Pfaff [23] had proposed the Team-

SCOPE system to support the needs of distributed team

of a project. TeamSCOPE implements features to support

communication awareness and artifact sharing. The artifact

sharing feature is a stand-alone application which has a preset

way for the members of the team to exchange their artifacts. In

our approach, engineers can define their mode of collaboration

based on their individual needs. Also, our approach is not

a specific tool but a framework that can be implemented in

different tools and for different artifacts.

Li et al. [24] proposed on their work a permission driven

collaboration scheme. The permission scheme requires any

sharing of information to be explicitly defined with a permis-

sion role towards the accessed data. Their work utilizes virtual

groups to address problems within multi-domain environments

where different engineering knowledge must be shared among

different groups. Their work differs from ours since they do

not discuss the change propagation in respect to the different

collaboration modes but they describe a mechanism to manage

the distribution of members among the groups.

M. Pasqual and O. Weck [25] present on their work the no-

tion of change propagation and a model to efficiently propagate

change requests to the different groups of engineers within a

project. This work or any related to it differs significant from

our work since they discuss the propagation of change as a

change request from external source. Whereas we discuss the

change propagation as a change made by the engineers to the

artifacts one created.

Fylaktopoulos et al. [15] presented an overview of the

platforms for cloud based development that most of them

support groups with instant or triggered collaboration mode

but none of them support the possibility of mixing these modes

for the individual engineer. In some cases, the engineers can

switch the group collaboration from one mode to the other

but they cannot choose individually within the group or per

direction, the mode they prefer.

VI. CONCLUSION

In today’s software engineering landscape, collaboration

is an essential part of the software engineering process. It

enables engineers to overcome the limitations of capabilities

of single humans and to resolve complex and difficult tasks.

Teams are the core form of collaboration among engineers.

Collaborative teams can vary on the how, when and what

engineers collaborate with. Tools exist that provide group

collaboration. However, they provide limited options for flexi-

bility to engineers to apply their preferred styles. Our approach

proposed a framework that can allow engineer form collabo-

rating groups the way they decide. Simultaneously within the

group, we can have engineers collaborating instantly or with

triggered mode allowing them to apply their individual work

style or the style that their role in the project requires. We

ensure that these conditions are holding within the group by

formally verifying our collaboration language and its change

propagation algorithm using Alloy. Later, we present evidence

of the scalability of our approach using four real large open

source projects. These projects were found on GitHub and

were actively developed at the time of writing. These projects

had between 73 and 790 engineers working on them. We

divided these engineers into different groups ranging in size

from five engineers, and increased these numbers until all

engineers were in one group. Furthermore, we compared

the group usage with the individual collaboration among all

engineers in the projects. This allowed us to observe the

benefits of using the group collaboration over the individual

interlinked collaboration. We plan to examine the ability to

extend our framework and implement workspace and group

hierarchies to provide further collaboration possibilities.
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